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Continuous time random walk model for standard map dynamics

R. Balescu*
Association Euratom–Etat Belge pour la Fusion, Physique Statistique et Plasmas, CP 231, Universite´ Libre de Bruxelles,

1050 Bruxelles, Belgium
~Received 21 August 1996!

In standard map dynamics, the time seriesxt are analyzed for chaotic orbits bounded by Kolmogorov-
Arnold-Moser barriers, for subcritical values of the stochasticity parameter. They can be described as a
succession of rather regular oscillations of bounded amplitude in basins located near island chains, and of
jumps between basins, at ‘‘random’’ times. This motion can be adequately modeled by a continuous time
random walk, using values of the parameters taken from the numerical data. The resulting theory describes a
subdiffusive motion, for which the mean square displacement tends towards a saturation value.
@S1063-651X~97!06003-0#

PACS number~s!: 05.40.1j, 05.45.1b, 05.60.1w
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I. INTRODUCTION

The problem ofanomalous transportcan be defined quite
generally, but vaguely, as transport~of matter or energy! in a
medium that isstrongly disordered. The cause of this disor
der may be structural~such as in a porous material!, or may
be due to the presence of strong and irregular collective fl
tuations~as in a turbulent fluid or plasma!. The name ‘‘dis-
ordered’’ rightly suggests that such systems are too com
for a detailed deterministic study: we are compelled to res
to statistical or probabilistic methodsfor the study of such
problems.

When the ‘‘degree of disorder’’ is very large, the syste
considered appears almost homogeneous on a macros
scale. This makes the statistical treatment very efficient
an extremely disordered system, when a characteristic ‘‘
chasticity parameter’’ is very large, the transport proces
behave almost classically, although the transport coefficie
depend on the stochasticity parameter~hence on the degre
of disorder!, and the driving mechanism is not collisiona
Such processes are calleddiffusive, but anomalous.

Real disordered systems are not ‘‘ideally disordered’’
the sense discussed above. Most often, there exist ord
structures immersed irregularly in a ‘‘chaotic sea.’’ Suchis-
landshave a deep influence on the transport processes.
latter are no longer classical; these phenomena will be ca
‘‘strange diffusion processes’’@1#. They may result in trans
port that is slower than the expected diffusive one~subdiffu-
sive regime!, or faster than the diffusive one~superdiffusive
regime!.

Strange transport is a very important problem, hav
many practical applications. It is also an extremely diffic
problem, because it occurs in systems that are neither ide
ordered, nor ideally disordered. There are extremely few
act analytical results available. In the majority of cases,
has to resort to numerical simulations, which may sugg
approximate mathematical models, which in turn, may p
sibly be treated analytically~or semianalytically!.

In principle, the study of the evolution of a material sy
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tem should start from the equations of motion. It is, howev
known that these are, generically, nonintegrable. They m
therefore be solved numerically. But even this is usually i
possible, because a minimal degree of precision requ
constraints that are not realizable even with the most pow
ful modern computers. A widely used method consists th
of replacing the differential equations of motion by amap,
i.e., replacing the continuous time description by a discr
one.

In the present work we shall consider the famousstan-
dard mapintroduced by Chirikov@2–4#. This map has been
used for modeling many physical phenomena. A probl
that reduces locally to the standard map is the diffusion
magnetic lines in a tokamak or a stellarator@5,6# ~although
the model is not quite faithful@7#!.

In the limit of very large stochasticity parameterK the
standard map has been extensively studied. In a pionee
work, Rechester and White@8# showed that the behavior o
test particles obeying standard map dynamics becomesdiffu-
sive. They calculated the corresponding anomalous diffus
coefficient, which was refined in subsequent works@9–11#
~see also@3#!. It was also shown that in the same domain
large stochasticity parameter, the behavior may beco
‘‘strange,’’ i.e. superdiffusivefor certain valuesof K @12–
15#. The latter behavior, due to the presence of ‘‘accelera
modes,’’ is very interesting, but not generic: it is a speci
feature of the standard model.

The dynamics of chaotic orbits in the standard map in
domain of moderately large, subcritical values of the s
chasticity parameter has been much less studied. It is, h
ever, a very important regime in practical applications. F
instance, in the tokamak problem, we must be sure that
magnetic field lines~and, hopefully, the plasma! remain con-
fined in the toroidal chamber. In this regime the particles c
only be dispersed in a limited region of space, because of
presence of impermeable KAM barriers. It appears tha
this case the process issubdiffusive.As will be seen in Sec.
II, the motion of the particles is strongly suggesting acon-
tinuous time random walk~CTRW! @16–19#. This analogy
was previously noted by Whiteet al. @20#. Their model and
its implementation are, however, very different from ours
will be briefly discussed in Sec. II.
2465 © 1997 The American Physical Society
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2466 55R. BALESCU
Our approach is semianalytical. An analysis of a lo
time series~Sec. III! reveals a number of~statistically!
simple features of the standard map dynamics. The latter
be described as a rather regular motion of the particle wi
a ‘‘basin,’’ followed by a jump to another basin, where th
motion is again rather regular, etc. Based on this picture,
simplify the present problem of deterministic chaos by co
sidering that its only random features are the transition pr
abilities between basins and the duration of the sojourn
given basin. These are precisely the ingredients necessar
the definition of a CTRW. The latter is defined and solv
analytically in Sec. III. In a simple case, the problem can
made quite explicit, by using numbers determined from
numerical calculations~Sec. IV!. In Sec. V the explicit solu-
tion of this simple case is obtained and analyzed: the runn
diffusion coefficient tells us how the final asymptotic state
reached.

II. TIME SERIES IN THE STANDARD MAP

We consider the well-known dynamical system known
Chirikov’s standard map@2–4#, defined by the following
equations describing the instantaneous valuesxt ,u t of the
two coordinates of a ‘‘particle’’ (u being an angle measure
in radians divided by 2p) at the regular timest ~wheret is
an integer!:

xt115xt2
K

2p
sin2pu t ,

u t115u t1xt11~mod1!. ~1!

The real numberK>0 is thestochasticity parameter. It is
well known that, forK.0, a variety of types of orbits are
possible:cycles ~periodic orbits!, island chains~encircling
the cycles!, KAM barriers, andchaotic orbits. For smallK,
the latter are limited to finite regions of phase spa
bounded by island chains and KAM barriers. AsK increases,
the barriers are progressively destroyed by the appearan
‘‘holes’’ which transform them into permeablecantori.
There exists a critical value,K5Kc , when the last
~‘‘golden’’ ! KAM barrier is destroyed, and the chaotic orbi
can reach arbitrary values ofx @21#; the value of the critical
K is Kc50.971 635 . . . .

We are interested in the dynamics of these systems
K,Kc . The regime under discussion corresponds to a s
ation of partially chaotic dynamics. A typical chaotic orbit
is shown in Fig. 1.

The golden KAM is an absolute barrier in this cas
Moreover, depending on the value ofK, there may be addi-
tional barriers defining regions in phase space whose bo
aries cannot be crossed by any chaotic orbit. In Fig. 1 th
are two clearly visible regions differing by the density of t
phase points: the boundary between them is acantorus. The
orbit starting in the upper part had to wait for a relative
long time before finding its way through a hole in the latt
In the situation represented in Fig. 1 there appear clearlyfour
‘‘main’’ island chains that are clearly identifiable by th
‘‘large’’ size of the islands. Clearly, the distinction betwee
‘‘large’’ and ‘‘small’’ islands is arbitrary. The forthcoming
treatment does not depend on where the limit is set, provi
an
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the number of ‘‘large’’ islands is specified at the beginnin
There are also, of course, secondary islands around
‘‘large’’ island: these will be, by convention, included int
the main island chain~the term ‘‘included’’ will be defined
more precisely below!.

Our main interest lies in the chaotic orbits. We shall stu
the way in which a set of particles starting with an arbitra
initial distribution in a certain region, bounded by two su
cessive KAM barriers, is eventually dispersed and fills t
entire phase space region included between the limi
KAM barriers and the island boundaries~as in Fig. 1!. Al-
ternatively, assuming the validity of~some kind of! an er-
godic property, one may follow a single chaotic trajecto
for a long time~i.e., by calculating many iterations of th
standard map!. Keeping in mind the application to the prob
lem of magnetic field line diffusion in a tokamak, the ma
interest lies in a reduced problem, viz., the‘‘diffusion’’ in the
radial direction,which corresponds to thex direction in the
standard map. The complete solution of this problem wo
involve the determination of thedensity profile n(x;t); this
quantity is, however, not easily accessible, either analytic
or numerically. A good~and usual! indicator of the disper-
sion is themean square deviation~MSD!: ^dx2(t)&. This is
easily measured numerically; our purpose here will be
devise an analytical model for its determination.

It is pretty cleara priori that the evolution process in the
case K,Kc cannot be diffusive.Indeed, because of the pre
ence of the KAM barriers, the MSD will necessarilysatu-
rate asymptotically, ast→`. The final value will be essen
tially the square of the width of the region. This is in contra
with a diffusive process, in which the MSD exhibits an u
bounded growth, proportional to time. The effective diff
sion coefficient~defined more precisely below! is thus nec-
essarily zero:

D[
1

2
lim
t→`

d

dt
^dx2~ t !&50. ~2!

We are thus in presence of a stronglysubdiffusive behavior.
The interesting problem is to study the dynamics of t

approach to the saturated steady state. A useful tool for
purpose is the graph of thex coordinate as a function o

FIG. 1. A chaotic orbit forK51.15, represented in the phas
space (xt ,u t) (7500 iterations, starting fromx050.4,u050.75).



f
e
ed
a

is
s

s

ts
to
n
n

Di

ne
to
la
he
e
a

he
e
e

en

ided

e

of

om

e
of

tes
ith
of

ed

re
stan-
he
the

non
y-
nt
ore

At
e
two
-
hey
s-
le-
the

wo
of
all
y

e,
be
in.
itial

ility

e-
he
d in
of
this

he
city

d

55 2467CONTINUOUS TIME RANDOM WALK MODEL FOR . . .
~discrete! time t: it provides us with a very different view o
the evolution process.~One may, of course, also plot th
angle u as a function of time; for the reasons explain
above, this information is less interesting for the applic
tions.! The complete graph ofxt vs t for a long trajectory
requires, of course, avery longsheet of paper. The analys
can be done, however, by using successive short section
this graph, as in Figs. 2~a! and 2~b!.

This type of evolution is very peculiar. We see a fir
period @Fig. 2~a!# roughly betweent50 and t5450 where
the particle oscillates fairly regularly between two limi
(0.1,x,0.4); at t'480 there is a sudden jump down
x'20.35; betweent'540 and 560 there is an oscillatio
between 0.28 and 0.48; betweent'600 and 780 there is a
oscillation between 0.38 and20.38, etc. The situation is
adequately described in terms of a set of basins. A basinis
defined as a region, bounded above and below inx, in which
a particle remains trapped for at least two oscillations inx
between the bounds, before it jumps to another basin.
ferent basins may overlap inx. A particle moving on a cha-
otic orbit starts at time zero in a basin, and remains confi
in it for some time; at some instant, it jumps suddenly
another basin and starts oscillating for some time in the
ter, after which another sudden jump brings it into anot
basin, etc. The duration of the sojourn in a basin is extrem
variable: it may be as short as 10 iterations or as long
10 000. The times at which the jumps occur do not seem
exhibit any regularity. When looking at a long trajectory, t
effect is particularly striking. The basins are clearly locat
in the ~external! neighborhood of the island chains. The p
culiar type of motion is thus a consequence of thesticking
propertyof the island chains and of the cantori@22–26#. Our
results show that the influence of a given island can ext
far in phase space~for K,Kc), to the point that the whole

FIG. 2. ~a! Time series forxt of a chaotic orbit in the standar
map.K51.2 (x050.18,u050.51), for 0<t<450. ~b! Same orbit
as in ~a!, for 450<t<900.
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available phase space for a chaotic orbit can be subdiv
into basins connected to the islands. On the other hand~as
will be seen below!, a basin is not defined merely as th
whole neighborhood of an island.

This type of evolution immediately suggests the picture
a continuous time random walk~CTRW! @16–19#. The idea
of representing the evolution in a standard map by a rand
walk was already used in a work by Whiteet al. @20#: they
use the suggestive description of the motion as‘‘step-pause-
step-pause- . . . .’’ Their model is, however, different and th
results cannot be compared to ours. A typical application
our model is the ‘‘diffusion’’ of magnetic field lines in a
tokamak. The ‘‘particles’’ represented by the coordina
(xt ,u t) are the intercepts of a given magnetic field line w
a plane perpendicular to the magnetic axis. The work
Whiteet al.aims at modeling the motion of physical charg
particles moving in a stochastic magnetic field~represented
by a standard map! and undergoing collisions. The latter a
represented by an additional noise superimposed on the
dard map. This additional stochasticity combined with t
deterministic chaos changes rather radically the nature of
problem.

The motion of the particles as illustrated in Figs. 2~a! and
2~b! also suggests a possible analogy with the phenome
of intermittenceas observed in turbulent flows. The underl
ing physics in the latter problem is, however, very differe
and we cannot tell at present whether the analogy is m
than superficial.

In the present work, the motion is idealized as follows.
time t50, a large number of particles is distributed in th
phase space. The particles can be subdivided into
classes. The‘‘jailed particles’’ are those whose initial posi
tion lies inside an island chain. For all subsequent times t
perform a strictly periodic motion, remaining inside the i
land chain where they started. The particles in the comp
mentary set, whose initial coordinates are located outside
island chains, are calledactive particles:for t→` they tend
to fill in all the space between the islands, bounded by t
successive KAM barriers. These will be the main object
interest in the forthcoming work. For brevity we agree to c
simply ‘‘particles’’ the active particles, unless explicitl
stated to the contrary.

We consider the evolution in time of the coordinatext .
Any given ~active! particle remains in a basin for some tim
then jumps abruptly to another basin, etc. We shall not
interested in the details of the motion within a given bas
Rather, we assume that the process, starting at a given in
value, is describedstatistically: the motion is then com-
pletely defined by the specification of three features:the lo-
cation of the relevant basins in phase space, the probab
of a sojourn of length t in a given basin,and the transition
probability between two basins.This picture is, of course, a
serious simplification of the exact motion. It amounts to d
claring that the whole ‘‘randomness’’ associated with t
deterministic chaos of the standard map is concentrate
the ‘‘statistics of the jumps between basins.’’ The shape
the time series such as those shown in Fig. 2 justifies
statement.

III. THE STANDARD MAP CTRW

The first point mentioned above, i.e., the location of t
relevant basins, depends on the value of the stochasti
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2468 55R. BALESCU
parameter and on the initial condition. We develop here
general analytical formalism which is illustrated by a ver
simple particular case. In this example, the stochasticity p
rameter is chosen to be well below the critical threshold, b
not too small~in order to produce sufficiently large chaoti
regions!; specifically, we chooseK50.7. The portion of
phase space under consideration is taken as the reg
bounded by the main island around (0,0) and the near
undestroyed KAM barriers above (x.0) and below (x,0)
this island; a typical chaotic orbit is shown in Fig. 3.

One can recognize near the boundary of the main islan
number of small secondary islands. In the time series, th
do not, however, appear as a distinct entity~with a well-
defined attached basin!. They are therefore not counted sep
rately, but rather are supposed to belong to the chaotic
gion.

We now consider a time series, as in Fig. 2. It clear
appears that thex coordinate sojourns successively in thre
regions: these are therelevant basinsfor K50.7 and for the
present configuration~Fig. 3! of the phase space. The thre
basins appear very clearly in the section of a chaotic or
shown in Fig. 4.~Specifically, this figure represents the se
tion 2700,t,3700 of the orbit starting atx050.2,
u050.88.!

This situation clarifies our previous remark: the basins a
not necessarily related, one to one, to the island chains
the present case there isa single island@centered on (0,0)#,
but there arethree basins.The latter correspond to the whole
island, to the upper half of the island, and to its lower ha
respectively. Thus, the basins do not represent a geometr
feature of the phase space, but rather adynamical property,
related to the way in which the orbit is covered in the cour
of time.

FIG. 3. A chaotic orbit forK50.7(,Kc), represented in phase
space (x050.25,u050).

FIG. 4. Section of time series forxt of a chaotic orbit (x0
50.2, u050.88).
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Having identified the relevant basins, we construct
CTRW model describing approximately this dynamics.~A
similar, but not identical problem is treated in the monogra
@18# under the name of ‘‘multistate CTRW’’.! We recall that
we are only considering here the distribution of active p
ticles among the relevant basins. The latter will be labeled
a Latin subscript, e.g.,m51,2, . . . ,M , whereM is the num-
ber of relevant basins in the problem. In our examp
M53; the labels are chosen~conventionally! as follows:
m51, whole island basin;m52, upper half island basin
m53, lower half island basin.

The random walk~i.e., the ‘‘dynamics’’! is completely
determined by the quantitiesnm(t): theprobability of finding
a particle in basin m at time t.These quantities can be con
sidered as the components of anM -component vectorn(t).
In our example,

n~ t !5@n1~ t !,n2~ t !,n3~ t !#. ~3!

We also use the abbreviated notationn0[n(0) @or
nm
0[nm(0) for the components# for the initial condition.
Next, we define thewaiting time distribution~WTD!. In the
classical CTRW problem@17–19#, there is a single function
c(t) characterizing completely this quantity. Here, the wa
ing time distribution can be different in the various basin
We thus definepm(t) as theprobability that a particle, en-
tering the basin m, makes a transition to another basin afte
a time t. It appears that these quantities must be conside
as components of a diagonalM3M matrix, P(t). In our
example this matrix is

P~ t !5S p1~ t ! 0 0

0 p2~ t ! 0

0 0 p3~ t !
D . ~4!

Thus, in general, the matrix elements ofP(t) are

^muP~ t !un&5pm~ t !dmn . ~5!

The last ingredient necessary for the definition of t
CTRW is thetransition probability fmn from basin n to ba-
sin m : the set of these quantities defines a matrixF:

^muFun&5 f mn . ~6!

By definition, the diagonal elements are identically ze
Thus, in our example we have

F5S 0 f 12 f 13

f 21 0 f 23

f 31 f 32 0
D . ~7!

We now start the solution of the problem. We note th
the probability that at least one jump has occurred out of
basinm during the interval@0,t# is the integral ofpm(t)
from 0 to t; hence, the probability that a particle, enterin
basinm at time zero, is still there at timet is

rm~ t !512E
0

t

dt pm~t!, ~8!
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or, performing a Laplace transformation,

r̂ m~s!5
1

s
@12 p̂m~s!#.

These quantities are grouped into a diagonal matrix@because
of Eq. ~5!#:

R̂~s!5
1

s
@ I2P̂~s!#. ~9!

Let nowqm(t) be the probability that a particle arrives
basinm just after a jump.Then, the probabilitynm(t) is
obtained by considering the probabilityqm(t) of landing in
basinm just at timet, multiplied by the probability that it is
still in m at time t, and summed over all intermediate tim
t:

nm~ t !5E
0

t

dt rm~ t2t!qm~t!,

or, in matrix notation and in Laplace representation:

n̂~s!5
1

s
@ I2P̂~s!#•q̂~s!. ~10!

In order to calculate the quantityqm(t) we consider suc-
cessively the cases where the particle that started in bask
at t50 lands inm at timet in j steps. Forj51, the particle
remains in basink for a timet and makes a jump tom at that
time; thus

qm
~1!~ t !5(

k
f mkpk~ t !nk

0 .

For j52, the particle waits in basink from t50 to t, jumps
to basinl , then waits there tillt, when it jumps tom:

qm
~2!~ t !5(

k,l
E
0

t

dt f mlpl~ t2t! f lkpk~t!nk
0

5(
l
E
0

t

dt f mlpl~ t2t!ql
~1!~t !.

This argument is easily generalized for arbitraryj , yielding a
recurrence relation:

qm
~ j !~ t !5(

k
E
0

t

dt f mkpk~ t2t!qk
~ j21!~t !, ~11!

which must be solved with the condition

qk
~0!~t !5nk

0d~t!. ~12!

It is easily checked, using the forms~4! and ~7! that Eq.
~11! is written in matrix form as follows:

q~ j !~ t !5E
0

t

dt F•P~ t2t!•q~ j21!~t !. ~13!

@At this point it clearly appears that the remarkable fact
ization appearing in Eq.~13! is ensured by our defining th
-

quantitiespm(t) as components of adiagonal matrix, rather
than a vector.# In the Laplace representation, Eq.~13! be-
comes an algebraic equation:

q̂~ j !~s!5F• P̂~s!•q̂~ j21!~s!,

which is easily solved, yielding

q̂~ j !~s!5@F•P̂~s!# j•n0.

We now sum this result overj in order to obtain the tota

probability vectorq̂(s):

q̂~s!5@ I2F•P̂~s!#21
•n0. ~14!

Finally, we substitute this result in Eq.~10! and obtain

n̂~s!5
1

s
@ I2P̂~s!#•@ I2F•P̂~s!#21

•n0. ~15!

This equation provides us with the complete solution of
initial value problem for our CTRW. It is very similar to th
well-knownMontroll-Weiss equation@16–19# adapted to our
problem. It expresses the Laplace transform of the proba
ity of the distribution of particles among basins, in terms
the initial condition n0 and of the input information ex-

pressed by the waiting time distributionP̂(s) and the transi-
tion probabilitiesF. For our simple example, a straightfo
ward calculation yields the following form for solution~15!
in the Laplace representation:

n̂1~s!5
12 p̂1

sD̂
@~42 p̂2p̂3!n1

01~21 p̂3! p̂2n2
0

1~21 p̂2! p̂3n3
0#,

n̂2~s!5
12 p̂2

sD̂
@~21 p̂3! p̂1n1

01~42 p̂1p̂3!n2
0

1~21 p̂1! p̂3n3
0#,

n̂3~s!5
12 p̂3

sD̂
@~21 p̂2! p̂1n1

01~21 p̂1! p̂2n2
0

1~42 p̂1p̂2!n3
0#, ~16!

with

D̂542 p̂1p̂22 p̂1p̂32 p̂2p̂32 p̂1p̂2p̂3 ~17!

~all symbols with a caret denote functions ofs).

An equation of evolution forn̂(s) is easily derived from
Eq. ~15! ~see@17–19#!:

sn̂~s!2n052~ I2F!•Q̂~s!•n̂~s!, ~18!

where

Q̂~s!5sP̂~s!•@ I2P̂~s!#21. ~19!
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2470 55R. BALESCU
By inverse Laplace transformation of Eq.~18!, we obtain
a non-Markovian equation of evolutionfor the distribution
vector:

] tn~ t !52~ I2F!•E
0

t

dt Q~t!•n~ t2t!, ~20!

which is to be solved with the initial conditionn(0)5n0.
These equations are quite generally valid, for an arbitr
CTRW, with an arbitrary number of basins.

IV. IMPLEMENTATION OF THE CTRW MODEL

We now specialize the results for our simple three-ba
case. The CTRW model of the standard map dynamic
defined by thetransition probability matrixF and by the
waiting time distribution matrixP(t). These quantities are
determined from an analysis of several ‘‘long’’ chaotic orb
generated by the standard map. In the present work we
four such orbits, forK50.7, each obtained by a total ofN
iterations from some initial condition. Their~arbitrary! labels
and their characteristics are as follows:

orbit A: x050.25, u050.00, N525 000,

orbit B: x050.00, u050.48, N525 000,

orbit C: x050.12, u050.40, N524 000,

orbit D: x050.20, u050.88, N524 000. ~21!

A time series was generated for each orbit and analy
as described below. The three basins are labeled by an i
m5(1,2,3), defined at the beginning of Sec. III.

A. Transition probabilities

For each orbit, every jump from a basinm to a basinn is
recorded: the total number of such jumps is denoted
Nn←m ~for instance, in the section of orbitD shown in Fig. 4,
we find N2←353, N3←252, N1←351, N3←151). These
numbers must be converted to transition frequencies or p
abilities f n←m ~for clarity we use in the present section a
arrow between the subscripts off nm). In order to define the
transition probabilitiesf n←m , we note that a particle leavin
basinm can only jump into one of the two other basin
hence

(
n

f n←m51. ~22!

Using this normalization condition, we define a first set
empirical transition probabilities as follows:

f 2←18 5
N2←1

N2←11N3←1
, f 3←18 512 f 2←18 ,

f 1←28 5
N1←2

N1←21N3←2
, f 3←28 512 f 1←28 ,

f 1←38 5
N1←3

N1←31N2←3
, f 2←38 512 f 1←38 . ~23!
y

n
is

ed

d
ex

y

b-

f

These numbers are calculated for each of the four orb
the values obtained in this way are slightly different for ea
orbit, because of the limited statistics~typically, one finds
the following values for f 2←18 for our four orbits:
20/3650.555, 16/3050.533, 17/4050.425, 11/2550.440).
Next, we note that the exact transition probabilities must a
satisfy the following independent normalization, express
that the particles entering basinn can only originate from
one of the two other basins:

(
m

f n←m51. ~24!

This condition allows us to define an alternative set of a
proximate transition probabilities~for each orbit!:

f 2←19 5
N2←1

N2←11N2←3
, f 2←39 512 f 2←19 ,

f 1←29 5
N1←2

N1←21N1←3
, f 1←39 512 f 1←29 ,

f 3←19 5
N3←1

N3←11N3←2
, f 3←29 512 f 3←19 . ~25!

These numbers are also calculated for each of the
orbits. They will be slightly different from the correspondin
f 8’s ~e.g., we findf 2←19 for our four orbits: 19/3550.543,
16/4250.381, 17/5250.327, 11/2550.440). We now take
the average as follows: for each pair (n,m) we add together
the four values off n←m8 and the four values off n←m9 and

divide the result by eight. The result is a matrixF̂ whose
elements are shown here together with the standard de
tions; we also show the sum of the rows and of the colum
in order to check Eqs.~22! and ~24!:

m51 2 3 (nf̂ n←m

n51 0 0.4760.07 0.4460.07 0.91
2 0.4660.06 0 0.5760.08 1.03
3 0.4860.07 0.5660.08 0 1.04

(mf̂ n←m
0.94 1.03 1.01

~26!

We note the following points. The two sum rules a
pretty well satisfied in spite of the rather small statistics. W
also note that the matrix is very nearly symmetric. Final
taking into account the standard deviations, this ‘‘empirica
matrix is compatible with the simplest choice implyin
maximum symmetry:

f n←m5
1

2
, ;m, ;nÞm, ~27!

or, in expanded form
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F5S 0 0.5 0.5

0.5 0 0.5

0.5 0.5 0
D . ~28!

Given that the three basins are attached to a single isl
this symmetry appears very reasonable.

B. The waiting time distribution

The successive times of sojourn in a given basinm,
Dtm , were measured sequentially in each of the four orb
available. For each basinm ~and for each orbit! the number
Nm
(q) of occurrences in successive sectors of length 50 c

prised betweent5q and t5q149 was determined~e.g., the
number of sojourns of length 0,Dt3<49, in basin 3, then
the number of sojourns of length 50<Dt3<99, etc.!: these
numbers~for eachm and eachq) were summed for all or-
bits. Dividing these numbers by the total number of succ
sive sojourns in basinm, a histogram is obtained, which is a
estimate for the waiting time probability in basinm:

p̂m
~q!5

Nm
~q!

(qNm
~q! . ~29!

~For the reader’s information we note that the total nu
ber of sojourns in each of the three basins found for the f
orbits analyzed here isN1

tot5131,N2
tot5158,N3

tot5156). The

quantitiesp̂m
(q) are plotted vsq, i.e., vs time.

As an example we show in Fig. 5 this plot for basin 1.
is clearly seen that the most frequent sojourns are relati
‘‘short,’’ Dt1,1000; there occur, however, rare sojourns
very great length, sayDt155500 or 8500~the latter repre-
sents about a third of a typical orbit considered here!.

These data can be pretty well fitted with a power la
distribution for a continuous time variable:

pm~ t !5Amt
212am. ~30!

The best values for the exponentam and for the constan
Am are determined by fitting a straight line to the points in
log-log plot ~Fig. 6!. @In fitting a straight line to the log-log
plot we discarded the two or three points corresponding
the very long~but very rare! sojourns. These points show
strong positive deviation from the straight line~but they are
not very deviant in the plot of Fig. 9!. Actually this deviation
is illusory: it is due to the factor 1/(qNm

(q) in the waiting

FIG. 5. Waiting time distribution for basin 1. Squares: measu
valuesc(t); solid curve: power lawp(t), given by Eqs.~30! and
~31!.
d,

s

-

s-

-
r

ly
f

o

time frequency~29!. When additional orbits are considere
(qNm

(q) increases rapidly, but the very long tail events rem
very rare ~of order 1): thus their frequency decreas
strongly, and in a log-log plot the corresponding points a
pushed down.#

We thus obtain the following values:

A15100.5, a150.3[a,

A25100.6, a250.5[b,

A35100.6, a350.5[b. ~31!

V. EXPLICIT SOLUTION OF THE CTRW MODEL

We now return to the general solution of the standard m
CTRW, Eq.~15!, and apply it to our special three-basin cas
The transition probability matrixF was determined in Eq
~28!. The waiting time distributions are compatible with
power law defined by Eqs.~30! and ~31!. The former equa-
tion implies that the Laplace transforms of these functio
are of the following asymptotic form for smalls:

p̂m~s!5@12Bms
am#, s→0. ~32!

Indeed, the inverse Laplace transforms of these functi
are provided by a Tauberian theorem@17,19,27#:

pm~ t !5Bm

am

G~12am!
t212am, t→`. ~33!

Thus, choosing

Bm5Am

G~12am!

am
, ~34!

combined with the values~31!, we are in agreement with th
empirically determined Eq.~30!. Using Eqs.~16! and ~17!
together with Eqs.~28! and ~32!, expanding the result for
small s, and performing the inverse Laplace transformatio
we find after a lengthy but simple calculation the result, e
pressed as follows. We first introduce the provisional abb
viation:

C5
B2

G~12b!
,

next, we define the functionsHi j (t):

d FIG. 6. Waiting time distribution for basin 1: same data as
Fig. 5, in a log-log representation.
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H11~ t !512
2b

G~12b1a!
t2~b2a!

1
4b2

G~122b12a!
t22~b2a!12Ct2b,

H12~ t !5H11~ t !22Ct2b,

H21~ t !5
b

G~12b1a!
t2~b2a!

2
2b2

G~122b12a!
t22~b2a!2Ct2b,

H22~ t !5H21~ t !1
4

3
Ct2b,

H23~ t !5H21~ t !1
2

3
Ct2b, ~35!

where b5B2 /B1 . The asymptotic solution of the CTRW
problem is then

n1~ t !5H11~ t !n1
01H12~ t !@n2

01n3
0#,

n2~ t !5H21~ t !n1
01H22~ t !n2

01H23~ t !n3
0 ,

n3~ t !5H21~ t !n1
01H23~ t !n2

01H22~ t !n3
0 . ~36!

The following conservation law is easily checked:

n1~ t !1n2~ t !1n3~ t !5n1
01n2

01n3
0 . ~37!

The behavior of the solution is understood from Fig. 7.~In
this and the following figures we taken1

050.5, n2
050.05,

n3
050.45.!
For very short times, we see a very rapid evolution; t

region is, however, irrelevant. Indeed, in this ran
n1(t).1 andn2(t),n3(t),0 . The asymptotic regime ex
pressed by Eqs.~36! begins to be valid, at least, fo
t.200, when all probabilities are in the physical domain.
the latter range, the evolution isstrikingly slow. It is clear
from Eqs.~35! and~36! that the final values of the probabil
ties are

n1
`51, n2

`50, n3
`50. ~38!

FIG. 7. Time evolution of probabilities of presence in basinm
vs t. Solid,n1(t); dotted,n2(t); dashed,n3(t).
s

Note that this asymptotic solution results from the i
equalitya,b. It is physically rather reasonable that after
long time all the particles end up in the basin correspond
to the entire island. As mentioned before, the evolution
wards these values is very slow. The long time behavio
thus better seen on a semilog plot, showingni(t) vs log10t
~Fig. 8!.

Next, we note that the curves representingn2(t) and
n3(t) are indistinguishable, in spite of our very unsymmet
initial condition. Indeed, as can be seen from Eqs.~35!, the
corresponding functions only differ by the terms proportion
to t2b, which are the most rapidly decaying ones. Thus,
sufficiently long times, the two curves coincide. Finally, b
considering various values forni

0 it is found that the
asymptotic evolution given by Eqs.~36! is remarkably insen-
sitive to the initial conditions: after, say,t51000, all curves
are practically the same. On the other hand, as for
asymptotic approximation, the solution cannot be extra
lated back tot50.

In order to determine the nature of the ‘‘diffusion’’ pro
cess, we now determine the evolution of themean square
deviation~MSD! as a function of time. It is naturally define
as follows:

S~ t !5(
j51

3

s j
2nj~ t !, ~39!

wheres j is the width of the basinj , which is determined
graphically from the orbits plotted as in Figure 4. Indee
during its sojourn in basinj , the particle oscillates with an
amplitude of orders j . The following values are obtained:

s150.56, s25s350.26. ~40!

Given the slowness of the process, the functionS(t) is again
plotted against log10t in Fig. 9.

The initial descending section of the curve is irreleva
because it lies in the unphysical range~i.e., the range where
the probabilities lie outside the physical domain@0.1# and
the asymptotic approximation is invalid!. After the ‘‘ghost
minimum’’ ~which corresponds roughly tot'250 for all ini-
tial conditions! the MSD increases very slowly towards a
asymptotic saturation valueS`, which is easily understood
from Eqs.~38! and ~39!:

S`5s1
250.314. ~41!

FIG. 8. Time evolution of probabilities of presence in bas
m: same data as in Fig. 7, plotted vs log10 t.
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We now consider therunning diffusion coefficient D(t),
defined in the usual way:

D~ t !5
1

2

d

dt
S~ t !. ~42!

Its graph is given in Fig. 10~plotted again vs log10t).
Only the relevant~i.e., positive! part of the function is
shown. The running diffusion coefficient is very small at
times ('1027); after a maximum, it decays to zero a
t→`.

The asymptotic vanishing of the running diffusion coe
cient and the corresponding saturation of the mean squ
displacement are the signature of a subdiffusive behavio
the standard map dynamics in the subcritical doma
K,Kc, i.e., in a regime of incomplete chaos.This kind of
behavior is not unexpected; the less obvious feature is
extreme slowness of the evolution. This shows that
stickiness of the islands is a very strong factor determin
the slowing down of the evolution process.

One might think of investigating other diagnostics of ch
otic motion for this strongly nondiffusive process. A possib
candidate, which is very useful in a superdiffusive regime
the concept ofexit time@28#. In the present case, howeve
this quantity is simply infinite, because the KAM surfac
bounding the region under consideration are strictly imp
meable.

VI. CONCLUSIONS

In the present work we developed a way of simplifyin
the complex dynamics of an unstable system, such as
standard map. At the same time we derived a simple met
for studying the ‘‘strange diffusion’’ appearing in this sy
tem in a subcritical regime. This feature is of interest
studies of anomalous diffusion of magnetic field lines in
toroidally confined plasma.

The feature responsible for the ‘‘CTRW-like’’ behavio

FIG. 9. Evolution of the mean square deviation,S(t).
l
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of the standard map is the sticking of the orbits near
islands. As a result, the ‘‘particles’’ remain trapped for
possibly very long time in a single basin before jumping
another basin, where the scenario is repeated. This fea
explains not only the overall subdiffusive nature of the m
tion ~which is trivial, because of the presence of KAM ba
riers!, but also the very slow evolution of the process. It m
be recalled that the same sticking property produces su
diffusion when it appears near an island encircling an ac
erator mode@12–15#. This type of behavior~which occurs in
some windows of the supercritical domain,K.Kc) is not a
generic property: accelerator modes are a specific featur
the standard map.

The simplification introduced in our model consists
retaining the interbasin transition probability and the waiti
time distribution as the only random elements in the~cha-
otic! standard map motion. This is, of course, an oversim
fication: the motion~of thex variable! inside a basin is not a
perfectly regular oscillation; but this aspect will presumab
not strongly affect the evolution of the MSD or the runnin
diffusion coefficient.

This work is, of course, only a first step; many more a
pects have to be studied. The calculations were develope
detail only for a simple three-basin situation. Our formul
~15!–~20! are, however, quite general and can be applied
many-basin situation. A feature that is definitely lacking
present is an indication of the dependence of the phenom
on the stochasticity parameterK: this aspect will be an objec
of forthcoming work.

We also intend to study other maps by this method: t
would serve a double purpose. First, it should show h
generic the results are of the present study. Next, it sho
allow us to study more realistic models of tokamak or st
larator plasmas, in order to end up with a theory of stran
and anomalous transport in such systems. This is our m
though remote, goal.

FIG. 10. The running diffusion coefficientD(t).
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